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A three-dimensional model of collapsing bubble with jet formation and impact
is presented in this paper. The strong instabilities of the jetting process, impact,
and toroidal bubble rebound are dampened by a new smoothing scheme based on
least squares, thus enabling a smooth transition from a singly connected bubble to a
doubly connected toroidal bubble. A high order of mesh regularity is maintained by
a mesh refinement procedure. The circulation of the flow around the gaseous tube
of the toroidal bubble is modelled by a generalization of the vortex ring method of
Q. X. Wanget al. (Comput. Fluids25, 607 (1996)). Although our results indicate
some differences from previous axisymmetric results in terms of time to impact and
fine features of the evolving toroidal bubble profiles, the essential physics associated
with the jet impact, such as the circulation around the torus and the rebound of the
toroidal bubble, are well captured in the new model. We also present, for the first time,
results for fully three-dimensional bubbles in which buoyancy effects lead to oblique
jetting. c© 2001 Academic Press
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1. INTRODUCTION

During the collapse of an initially spherical bubble near a rigid wall, different parts of the
bubble contract at drastically different rates: the part farthest from the wall moves the fastest,
and the part nearest to the wall the slowest because of the constraining influence of the wall.
This imbalance results in the surface of the bubble on the far side deforming into a liquid
jet directed at the wall. Fluid on the far side of the bubble rushes into this developing jet,
which advances to hit the opposite face of the bubble. The impact transforms the originally
simply connected bubble into a bubble of toroidal form and imparts a circulation to the flow
around the gaseous tube of the toroidal bubble. In engineering practice, the high-speed jet
is often associated with the damage caused by collapsing cavitation bubbles to hydraulic
machinery. The high-speed jets produced by large collapsing bubbles are also known to
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inflict devastating damages on submerged surfaces and vessels. Excellent reviews on this
subject may be found in Plesset and Prosperetti [1], Blake and Gibson [2], and Blakeet al.[3].

Previous theoretical studies on bubble dynamics have tended to focus on cases of spher-
ical and axisymmetric bubbles. Much about the phenomenon of bubble jetting has been
understood through these studies (Guerriet al. [4]; Blake et al. [5]). In particular, it was
found that the main damage is done to the structure during the toroidal phase, i.e., after
the jet impact [5, 6]. The formation of toroidal bubbles from the jetting of axisymmetric
bubbles was first computationally simulated by Best [7, 8]. He continued the computation
into the toroidal phase with the aid of acut surfacethat represents the impact surface.
The domain cut was introduced to render a nominally singly connected domain. A similar
domain-cut procedure was used by Zhanget al. [9], whose model also allows a shear layer
to be generated along the cut surface during the impact. Recently, Wanget al. [6], utilizing
a concept due to Lundgren and Mansour [10], proposed that the flow circulation generated
during jet impact be modelled by a vortex ring placedinsidethe tube of the toroidal bubble.
This ingenious device removes the discontinuity of the velocity potential due to non-zero
flow circulation, and hence also the need for an explicit domain cut.

It is only recently that researchers have begun to explore the simulation of three-
dimensional (3D) bubbles [11–15]. Zhanget al. [14] introduced a trivariate representa-
tion of surface elements in the form of the 9-noded Lagrangian element and applied the
model to multiple bubbles in the presence of a free surface. The trivariate element provides a
consistent representation of the bubble surface in a single global coordinate frame, whereas
the more customary bivariate representations require the use of local frames. Zhanget al.
[15] explored the application of a desingularized indirect boundary-integral procedure to
the simulation of 3D bubbles. The desingularized indirect method represents the potential
function as the arithmetic sum of the potentials of point singularities that are located inside
the bubble (a short distance below the surface) rather than on the surface of the bubble as is
customary with direct integral representations. It provides an element-free representation
of the surface potential and was found to be highly efficient numerically. Despite the very
different principles involved, the results of the 9-noded Lagrangian-element direct model
and the desingularized indirect boundary integral formulation agree remarkably well with
each other. These models fall short, however, when applied to cases that involve jet impact.
Surgery has to be performed on the bubble surface during jet impact to create a toroidal
bubble. The limitation of the 9-noded Lagrangian element is that each node can have at most
8 nodal neighbours. With mesh refinement, which is deemed to be essential to maintain
element regularity for highly distorted bubbles, it is possible to end up with nodes having
more than 8 neighbouring nodes. This is especially so during the surgical reconstruction of
the bubble. The limitation of the desingularized formulation lies in the interior seeding of
its singularities, which makes it difficult for opposing bubble surfaces to be brought into
contact. The approach of the liquid jet is thus halted even earlier than for direct methods. To
allow the jet to approach closer to the facing bubble surface, one may have to switch back
at the appropriate point to a direct formulation. The above models are therefore not well
suited to dealing with jet impact. The development of a 3D model that takes the evolution
of the bubble through jet impact and beyond presents a significant challenge, which is the
subject of the present paper.

The development of the high-velocity jet, the impact and formation of the toroidal bubble,
and the follow-on evolution of the toroidal bubble together present a formidable problem,
not the least because the transition to the new geometry is afflicted by strong instability. A 3D
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model of collapsing bubbles with jet impact which incorporates features that are absent in
the earlier models is described in this paper. The new model uses the same basic triangulation
of the bubble surface. The initial mesh on the bubble tends to become highly distorted and
stretched as the jet extends deep into the bubble. The resultant mesh irregularities spell
trouble for numerical accuracy and conditioning. The regularity of the triangular mesh is
maintained in the present model by a mesh refinement procedure that limits the size variation
of elements around a nodal point. It can also limit the variation of element size over the
whole bubble so that errors produced by the surgical reconstruction of the bubble to render
a toroidal geometry are kept at a reasonable level. Strong instability is encountered as the
jet approaches the opposite bubble surface. This and other instabilities that accompany the
transition to toroidal geometry are kept in check by a local least-squares smoothing scheme.
The smoothing procedure, which removes the noise generated by the instabilities, allows a
reasonable time step to be used to carry forward the computation. The vortex ring method
introduced by Wanget al.[6] to represent flow circulation for axisymmetric toroidal bubbles
is extended to 3D bubbles here. In this approach, the potential of the flow is decomposed
into a vortex-induced part and a remainder that is continuous throughout the fluid domain.
The more complex geometry of the 3D bubble necessitates the use of non-planar ring.

The present model is found to be able to reproduce the essential physics of bubble jetting,
flow circulation around the toroidal tube and the rebound of the toroidal bubbles. Some
differences exist, however, between the present results and the axisymmetric results of Best
[7, 8] and Wanget al. [6]; in the time to impact and fine features of the evolving toroidal
bubbles. These differences are probably due to the more limited spatial resolution of the 3D
cases. The overall agreement between the two models is nevertheless satisfactory. The new
model is applied to collapsing 3D gas bubbles with non-negligible buoyancy. Buoyancy
effects typically become significant when a bubble becomes large. Oblique jetting and the
attendant impact are caused by a combination of buoyancy and Bjerknes effect due to the
presence of a nearby wall.

2. AN IMPROVED 3D BUBBLE DYNAMICS MODEL

2.1. A Weighted-Average Scheme

Figure 1 shows a schematic view of the problem to be considered in this paper. We only
look at the case of a pressure-driven gas bubble initiated near a rigid infinite wall in an
incompressible fluid. Surface tension effects are not accounted for in this study because
of the generally large size of the gas bubbles we have in mind. Viscous effects are also
neglected because the timescale for viscous diffusion is much larger than the oscillation
period for these bubbles. In addition, a rectangular coordinate systemO-xyzis adopted with
the origin located at the center of the initially spherical bubble and thez axis pointing in the
opposite direction ot gravity (Fig. 1). The boundary of the bubble is denoted asSb, which
is a regular surface before and after the jet impact. The fluid domain is denoted byÄ and
it is transformed from a singly connected to a doubly connected region during jet impact.

The pressure inside the bubble consists of two parts: a constant pressure of vapourpc

and the pressure of noncondensable gas that conforms to the adiabatic law,

p = pc + p0

(
V0

V

)λ
, (1)
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FIG. 1. A schematic view of the problem and the coordinate system used.

whereV0 andp0 are the initial volume and pressure of the noncondensable gas, respectively,
andλ is the ratio of specific heat of the gas. In this investigation we takeλ = 1.4.

We then proceed to nondimensionalize the variables: with the length scale chosen to be
the maximum bubble radiusRm, the pressure scale being1p = p∞ − pc, wherep∞ is the
ambient pressure atz= 0, and the density scale beingρ, the density of the liquid.Rm is the
maximum radius that the bubble would attain in an unbounded fluid domain (the Rayleigh
bubble) at the constant pressure ofp∞. The nondimensional parameters that characterize
the problem are

δ =
√
ρgRm

1p
, and ε = p0

1p
, (2)

which measure thebuoyancyeffects and thestrengthof the initial pressure inside the bubble,
respectively. In this paper, the parametersδ andε are prescribed.

The potential theory dictates that there exists a velocity potentialφ(x, y, z, t) which
satisfies the well-known boundary integral equation

c(P)φ(P)+
∫

Sb

[
φ(Q)

∂G(P, Q)

∂n(Q)
− G(P, Q)

∂φ(Q)

∂n(Q)

]
dS(Q) = 0, (3)

wherec(P) is a geometrical constant depending only on the location of the field pointP
andn is the unitoutwardnormal on the boundary. Note that the integral is carried out only
on the bubble surface as the effect of the rigid wall has been taken into account in the Green
functionG(P, Q)

G(P, Q) = 1

|p− Q| +
1

|P′ − Q| , (4)

with P′ being the reflected image ofP with respect to the wall. It is trivial to verify from
(4) that ∂G(P,Q)

∂n(Q) = 0 on the rigid wall.
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The bubble deforms with time according to the following kinematic and dynamic bound-
ary conditions,

Dx
Dt
= ∇φ,

Dφ

Dt
= 1+ 1

2
|∇φ|2− δ2z− ε

(
V0

V

)λ
,

 for x ∈ Sb, (5)

wherex is the position vector andD
Dt denotes the material time derivative. From these

equations it can be seen that it is essential to have an accurate scheme to evaluate the
velocityu = ∇φ on the surface of the bubble. This has been a major issue in the boundary
integral modeling of 3D bubbles [14, 16]. The flow velocityu = ∇φ generated by the
bubble should tend to zero in the far field. This condition is automatically met by the choice
of Green’s function in (4).

The bubble is assumed to begin its existence at timet = 0 as a high-pressure spherical
bubble of radiusR0 with zero wall velocity. The evolution of the bubble in the absence of
buoyancy effects and far from any surfaces is governed by the Rayleigh equation

RR̈+ 3

2
Ṙ2 = ε

(
R0

R

)3λ

− 1. (6)

With ε given, the initial radiusR0 may be solved by the reverse time integration of (6) from
the nondimensional maximum radius of 1.0 to the radiusR0; following Best [7]. R0 may
alternatively be obtained by considering the conservation of potential energy between the
initial state and the state of maximum radius,R= 1. The position of the rigid wall relative
to the spherical initial bubble is also prescribed to complete the geometrical specification
of the problem. Given the quiescent initial state,φ = 0 throughout the entire fluid domain
at t = 0.

The following discussions closely follow those in our recent paper [14]. The surface
of the bubble is discretized into a series of linear triangular elements. The time marching
is done using a second-order Runge–Kutta scheme. To maintain numerical stability, the
time-step sizeδt is choson in accordance with the criterion

δt = 1φ

max|Dφ/Dt | , (7)

which seeks to approximately limit the maximum change in the nodal potential at each
time step to a specified constant1φ; the maximum in the denominator of (7) is taken
over all the nodal points on the bubble withDφ/Dt given by (5). A value of 0.03 is set
for 1φ in the computation. But an important distinction from [14] is the way the material
velocityu = ∇φ is calculated. In anticipation of the need for an adaptive mesh as well as the
complicated surgery to be performed during the jet impact, it is essential to have a simple,
accurate algorithm for the calculation of velocity. The 9-noded Lagrangian element method
in [14] proves to be cumbersome in this aspect and hence we adopt here a weighted-average
scheme. This scheme is based on a simple idea that although the normals are undefined
at the vertices of the polyhedron (the discretized bubble surface), it is well defined within
on each triangular surface element. Therefore, after the normal velocity∂φ

∂n has been found
from the boundary integral equation (3), we can obtain, using a finite difference scheme,
the velocities along two tangential directions l and m (i.e., along two sides of the triangular



3D JET IMPACT AND TOROIDAL BUBBLES 341

element). With this information, we can compute the velocity vector within each element
supporting a particular vertex or node by solving the 3× 3 matrix equation

nx ny nz

lx l y lz
mx my mz


ui

vi

wi

 =


∂φ

∂n

∂φ

∂l

∂φ

∂m

 , (8)

where (ui , vi , wi ) is the velocity vector due to thei th element. Note that this matrix equa-
tion always has a solution becausen = 1×m 6= 0. Finally, the velocity at this vertex or
node is obtained as the weighted average of all theui = (ui , vi , wi ), i.e.,

u =
∑

i
ui
1i∑

i
1
1i

, (9)

where1i stands for the area of thei th element surrounding the node. The weighting function
1−1

i is chosen so that a smaller element yields a bigger contribution to the average velocity
than a larger element; we note that in calculus, a smaller element (increment) yields a more
accurate approximation of the local properties than a larger one.

This new algorithm of computing the velocity, different from the ones employed by
Wilkerson [11] and Harris [17], ensures the convergence of the solution. In their linear
averaging scheme, the normal at a particualr node is approximated by averaging the normals
of its surrounding elements. This has led to poor approximation of local properties, and even
to nonconvergence of solution as the mesh is refined [16]. This may be easily understood,
given that the accuracy of the computed normal is highly dependent on the regularity of
its surrounding elements [16]. After all, the “true” normal at a vertex of a polyhedron is
undefined. Our method, on the other hand, circumvents this dilemma by doing away with
the use of the normal in velocity computation. As the mesh is refined, the computed velocity
ui in each element unexceptionally approaches the exact velocity and thus convergence is
guaranteed.

The verify this, we apply the new method to a simple Rayleigh bubble which undergoes
periodic expansion and contraction radially in an unbounded fluid. Despite the nonunifor-
mity of elements surrounding a nodal point, the computed velocity converges to the radially
directed velocity distribution of the Rayleigh bubble as the mesh is refined. The period of
oscillation and maximum radius of the computed bubble also accurately match those of the
Rayleigh bubble, as may be seen in Fig. 2, in stark contrast to the results of Harris [17].

2.2. Adaptive Mesh Refinement

Another major advance of the current model over previous 3D models is the incorporation
of an adaptive mesh scheme. As the bubble contracts and more and more elements are being
drawn into the developing jet, the aspect ratios of some elements become very large and
elements surrounding some nodes become highly nonuniform and irregular. This is of
course highly undesirable from a numerical viewpoint and will lead to an early breakdown
of computation. The inclusion of an adaptive mesh scheme offers part of the solution to
this problem and it prevents the bad aspect ratio and nonuniformity of element sizes from
developing. There are many kinds of adaptive schemes. We adopt one in which all the sides
of the triangles exceeding twice the average length are halved. Simple test runs indicate that
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FIG. 2. The time history of the Rayleigh bubble radius calculated from the Rayleigh–Plesset equation using
a fourth-order Runge–Kutta method (solid line), the 3D model using the linear averaging method with 162 nodes
(dash line), 252 nodes (dots), and 362 nodes (dash-dot line) being used.

this scheme has indeed produced a relatively uniform mesh with a reasonably small aspect
ratio in each element. It is also very economical, as an initially coarse mesh can be used with
extra nodes being added in the places where the resolution becomes poor. It far outperforms
schemes which start with a fine initial mesh but apply no adaptive remeshing. There, a
large number of nodes are crammed into the jet with inadequate resolution elsewhere on
the bubble and some of the elements in the reentrant jet become highly elongated in the
direction of jet advancement.

2.3. Smoothing Scheme

The adaptive meshing of the bubble does not prevent severe numerical instability from
developing during computation. As can be seen from Figs. 3 and 4a, towards the end of
the collapse phase, numerical instability begins to manifest itself as sharp corners and
reentrances on the surface of the bubble. If not controlled, these irregularities will amplify
rapidly and bring the development of the jet to a halt with their high velocities. Computation
then comes to a virtual stop while the jet is still quite far away from the opposite face of
the bubble. This is, of course, a purely computational difficulty, since experiments have
indicated that the jet will quickly hit the opposite face. The exact causes for these numerical
instabilities are not yet fully understood. The recent works of Houet al. [18] and Baker
and Nachbin [19] on two-dimensional Hele-Shaw bubbles and vortex sheet motion have
shown that the clustering of nodal points may impose a severe limit on the stable time-step
size and that this limitation may be somewhat ameliorated by a redistribution of the nodal
points. Such redistribution of Lagrangian nodes, based on arc-length spline interpolation,
had in fact been employed by Best [8] and Wanget al. [6] in their axisymmetric bubble
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FIG. 3. The bubble profile att = 2.1666, calculated with (dash line) and without (solid line) smoothing. The
wall is situated atz= 1.5 andδ = 0, ε = 100.

works. Arc-length-based spline interpolation also appears to have some smoothing effects
on high-frequency features and errors because of its implicit smoothness. The stability
results of Houet al. [18] may also be generically significant to other time-based boundary
integral problems. It is not straightforward, however, to extend their analysis to the present
3D problem to determine a rigorous time-marching criterion to replace (7).

The jet impact that arises in the rapid collapse of bubbles is a violent physical event,
involving as it does the collision of a fast-moving fluid jet into a slow-moving fluid wall.
Despite that, many of the bubbles captured in the experiments had retained a fairly well-
defined, and sometime relatively smooth, profile for some time into their toroidal phase
[20–22]. This is especially true of bubbles with a narrow liquid jet, where significant sur-
face corrugations occur mainly in the vicinity of the impact point. Cavitation bubbles show
greater tendency than gas bubbles to break up at jet impact, partly because the collapse
tends to be more violent in the absence of a resisting gaseous medium. For small bubbles,
which is the case with the experiments, the effects of viscosity and surface tension are also
likely to be more significant and possibly destabilizing to the surface. The present work
is more concerned with gas bubbles of a significant size, where the effect of buoyancy is
nonnegligible. For these bubbles, the effects of viscosity and surface tension are likely to be
much less significant than the effects of inertia. Inertia is the dominant driving mechanism
in the evolution of a pulsating bubble and is the mechanism modelled by the present work.

Given the violent nature of the jet impact phenomenon, one can expect any attempt at its
simulation to be plagued by strong and persistent instabilities, and the causes of these are not
all numerical. The process of jet impact represents a physical singularity in time and space,
singular in the sense that it is a discontinuous process in time and space. The transformation
to toroidal bubble during jet impact represents no less than a change in the topology of the
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FIG. 4. The 3D view of the bubble, calculated (a) without any smoothing being applied to it, (b) with a
smoothing being applied to it, near the end of the collapse phase (t = 2.1694 for (a) andt = 2.1674 for (b)). The
bubble is characterized by the same parameters as in Fig. 3.

underlying fluid domain. In the physical world, this singularity is smeared over time and
space by material compressibility and viscosity (and associated turbulent diffussion, etc.).
But for simplicity, these physical attributes are not represented in the present mathemat-
ical model. A purely inertia model, such as the present, possesses no physical means for
smearing the singularity at impact. From a numerical viewpoint, singularity spells trouble.
If the singularity is integrable, we can hope to capture its principal properties and effects
with a finite-resolution numerical scheme, albeit a rather fine one. In numerical simulation,
smearing of singularity occurs naturally as a consequence of the finite discretization of time
and space. But this smearing of the singularity is actually an error and does not represent a
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physical event. We can keep this error acceptably small, however, by employing a fine mesh
and small time steps. Indeed, a fine mesh is necessary to adequately resolve the features
near a singularity. In theory at least, singular event requires infinitely fine mesh and time
steps to resolve. In the context on the present problem, a relatively fine mesh near the impact
point is also essential to keep the errors due to domain surgery small. However, with a fine
mesh, the time steps becomes prohibitively small,O(h3) according to the 2D analysis of
Houet al. [18], whereh is the smallest mesh size. The smallness of the time step is further
greatly aggravated by the very high velocity of the liquid jet (100 to 200 m/s for a relatively
small bubble), so that the progress of the simulated event comes almost to a standstill. To
move the simulation forward in time, significantly larger time steps are needed. This then
leads to high-frequency instability and errors and the collapse of computation. In order
to move forward with acceptably larger time steps, it is necessary toremoveor filter out
these errors so that they do not grow to jeopardise the computation. The is the role of the
smoother.

A concern raised with the use of the smoother is that the fine features produced by
the highly singular nature of impact may be lost. This is a genuine concern. However, on
further reflection, one will realise that these fine features would in reality interact strongly
with viscous and surface tension effects, effects that are after all not incorporated in the
model. The fine features therefore represent a higher-order effect, which would be of little
significance for a large bubble. Their removal is hence not inconsistent with the neglect of
viscosity and surface tension in the model. We therefore believe that the principal dynamics
of the bubble and jet impact, with respect to inertia and momentum, will be well captured
in spite of smoothing. With a suitable smoother, significantly larger time steps (although
still quite small) can be used to move the computation forward.

The 5-point local smoothing formula of Longuet–Higgins and Cokelet [23], coming from
their landmark numerical study of breaking waves, has been used extensively in the boundary
integral study of axisymmetric bubbles [5–8, 24], and these numerical studies have been
successful in reproducing many dynamical features of the immediate postimpact bubbles
observed in experiments. The effects of viscosity, surface tension, and compressibility are
mostly neglected in these studies. Unfortunately, the 5 point formula cannot be easily
generalized to 3D bubbles. Spectral filtering would provide a systematic way to remove
high-frequency noise/errors, but again it is difficult to construct such a filter for the present
3D setting. A smoothing scheme for 3D bubbles undergoing jetting and transformation to
a toroidal form based on aleast-squares principleis proposed in this paper. The smoother
allows the jet to continually advance to the close proximity of the opposite bubble face (even
as the numerical conditioning of the problem becomes progressively ill and the problem
itself becomes increasingly singular) and the postimpact toroidal bubble to evolve stably and
with good overall conservation of energy. To minimize its effects on the physics, smoothing
has been applied sparingly as and when necessary to maintain computational stability.

2.4. A Least-Squares Smoother

Curve fitting using least squares is commonly used in the analyses of empirical data,
to capture the essential trend, defined by a set of control parameters, in a manner that
minimizes the squares of the errors (deviations) as contained in the scatter of the data. To
put it another way, subject to the limitations of the control parameters in representing the
trend, least-squares procedures are optimal in ensuring the minimal loss of information
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from the data source. This feature makes least squares ideal for a smoothing procedure that
is aimed at removing high-frequency “noise” present in numerical data. This feature also
makes the least-squares error reduction principle a powerful tool in the solution of many
numerically posed problems, such as in many finite element implementations.

To implement this scheme, we first identify a surface patch on the bubble comprising a
particular node (which will be referred to as node 1), itsn immediate neighboring nodes,
and them immediate neighbors of then nodes. This yields a 2-tier nodal structure around
the central node 1 which resembles the 5-point structure used in a typical 5-point smooth-
ing formula, whereby a particular node and two of its adjacent nodes on either side are
involved. It also conveniently guarantees that there are always a sufficient number of nodal
points for the following least-squares scheme. A local coordinate systemO′ − x′y′z′ is then
established on this local surface patch, with the origin being located at node 1 and thez′

axis pointing in the direction of the outward normal. With reference to this local frame, the
smoothed surface is represented by a biquadratic function,

z̃′ = a1x′2+ a2x′y′ + a3y′2+ a4x′ + a5y′ + a6 ≡ f (x′, y′), (10)

where the coefficients,ai (i = 1, . . . ,6) are found by minimizing the error function,

L(a1, . . . ,a6) =
m+n+1∑

j=1

[ f (x′j , y′j )− z′j ]
2, (11)

where the sum of squres is taken over all the nodal points in the surface patch. Afterai are
found, the corrected or smoothed coordinates of the central node 1 are simply (0, 0,a6).
The same procedure is also applied to smooth the potential functionφ.

There is a problem, however, with regard to the construction of the local frame, since the
normal is unknowna priori. Here we adopt an iterative scheme, outlined below, that allows
the normal and the smoothed surface to be calculated at the same time:

(i) Make an initial guess of the unit normaln0 at node 1. For this, an averaging scheme
such as (9) will do fine.

(ii) Construct a local frame based onnk−1.
(iii) Compute the smoothed surface according to (10) and (11).
(iv) Compute the new normal to the smoothed surface at node 1,

nk = ± (a4,a5,−1)√
1+ a2

4 + a2
5

, (12)

where the sign can be chosen such thatnk · nk−1 > 0.
(v) If ‖nk × nk−1‖ < εwhereε is a pregiven small constant, the iteration stops; otherwise

assignnk−1 = nk and go back to (ii), until the result converges.

In our computation, we found that the number of iteration needed is no more than 5
for ε = 0.001 and therefore this part of the computation consumes a minimal amount
of CPU time. The above local smoothing procedure is applied to each nodal point on the
bubble surface to remove high-frequency local fluctuations. The smoothing does not prevent
the bubble surface from developing high-order variations on a global basis, unless those
variations approach the fine-scales of the local fluctuations.
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FIG. 5. Comparison of the evolution of the bubble (with the same characteristic parameters as in Fig. 3)
during the collapse phase. The timings of successive profiles using the axisymmetric model of Wanget al. [b, 30]
(full-line) t = 1.093 (outermost), 1.842, 2.077, 2.129, 2.148, 2.182 (innermost); using the current 3D model with
smoothing and adaptive meshing (dots),t = 1.093 (outermost), 1.842, 2.077, 2.129, 2.148, 2.171 (innermost).

The effectiveness of the smoothing can be clearly seen in Figs. 3 and 4. Without any
smoothing, the bubble surface wrinkles as the jet forces its way into the interior of the
bubble, with zigzags appearing almost everywhere on the bubble surface and the regularity
of the surface slowly deteriorating with time (Figs. 3 and 4a). The smoothing scheme, on
the other hand, has not only ironed out the wrinkles but also preserved well the surface
profile and the forward motion of the bubble jet (Figs. 3 and 4b). As a result, the jet can
now advance into striking range of the opposite face of the bubble and be well poised for
imminent impact (Fig. 4b).

As a summary, a comparison is made in Fig. 5 between the axisymmetric and 3D results
for a bubble undergoing jetting (thepretoroidalphase). To minimize the loss of momentum
due to smoothing, we have applied the smoothing scheme only sparingly, and not until the
liquid jet has advanced to within a very short distance of the opposing bubble wall (typically
the last 50 time steps prior to the impact) is the smoothing switched on and applied to the
solution every 10 time steps. It can be seen from Fig. 5b that the instability starts to manifest
on the 3D bubble surface as it collapses but is eventually eliminated by the smoother. The
overall agreement between the two models is very satisfactory. As explained in two of our
recent papers [14, 15], the axisymmetric solution tends to evolve slower than the 3D solution.
This may be due to the extensive application of smoothing during the whole collapse phase
in axisymmetric models to maintain numerical stability. This may be demonstrated with a
simple test where the solid wall is placed so far away from the bubble that its influence on the
latter is virtually negligible and thus the bubble resembles a Rayleigh bubble (cf. [14]). In
this case, the axisymmetric solution evolves slightly slower than the Rayleigh bubble, while
the 3D solution is virtually indistinguishable from the latter. The frugal use of smoothing
towards the end of the bubble collapse should not significantly alter the accuracy of our
results. Another comparison is made in Fig. 6 of the “final” profiles of the bubble computed
from the two models just before a surgery is carried out in the impact model (i.e., when the
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FIG. 6. The bubble profiles just prior to the jet impact, calculated from the axisymmetric model [30] (solid
line, with t = 2.182) and the 3D model (dash line, witht = 2.171).

distance between the north and south poles is less than a certain amount, say 0.03). Again
good agreement is observed between the two solutions.

3. JET IMPACT MODEL

3.1. Surgical Cut

The fluid domain becomes doubly connected when the liquid jet impacts on the opposite
face of the bubble near the end of the collapse phase. This and other forms of interaction
among surfaces or fronts in a fluid have posed considerable difficulties to the fluid numeri-
cists. There are two basic groups of methods for dealing with such interface problems:
front-capturing methods and front-tracking methods. Front-capturing methods do not track
the interfaces directly. In particular, a popular front-tracking method, the level-set method
(see Sussmanet al. [25]), is based on the convection of a scalar property defining the in-
terfaces in an Eulerian setting. Complex topological changes of the interfaces are captured
in the changing contours of the associated scalar function. Front-capturing procedures tend
to be weak for problems that demand a high-order of geometrical accuracy at the interface,
such as in problems that are governed by surface tension. For problems with a Lagrangian
bias, such as the present, the direct tracking of the interface or front is the more natural
scheme—more so, because the boundary integral computation involves only surface quan-
tities. The weaknesses of front tracking procedures are the difficulties of knowing when
surfaces come into contact and the need to reconfigure the interacting surfaces in a manner
that is consistent with the physics. These are nontrivial tasks. Fortunately, for the jet impact
problem considered in this paper, the geometry of the impacting surfaces is fairly simple. A
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more thorough review of front-tracking procedures for bubbles and droplets in more general
flow settings may be found in Unverdi and Tryggvason [26].

The impact process is physically a very complex one. Here we shall further restrict
our study to the idealized case where the impact occurs at a single point, and the effects of
the impact are entirely transformed into a circulation in the fluid domain. We also extend
Wanget al.’s axisymmetric model of jet impact [6] to a 3D setting where the ring is not
necessarily planar.

To go into the toroidal phase, a surgical cut must be made to transform the fluid domain
Ä from a singly connected to a doubly connected region. To perform the surgical cut, we
first identify two nodes,n1

0 andn2
0 (one on the advancing jet and the other on the opposite

bubble face, respectively), that are nearest to the anticipated point of impact. The two nodes
are selected when the jet tip approaches within, say, 0.03Rm of the opposite face. Their
immediate neigbours,n1

i (i = 1, . . . , K1) andn2
j ( j = 1, . . . , K2), are also identified. If the

numbers of nodes around the two pointsn1
0 andn2

0 do not match (i.e.,K1 6= K2), additional
nodes are inserted along the appropriate line segments to bring the numbers to par. We may
hence assume thatK1 = K2 ≡ K . A new set of nodesn3

i (i = 1, . . . , K ) is then created at
the midpoints

xn3
i
= (xn1

i
+ xn2

i

)/
2 (13)

between the correspondingn1
i andn2

i nodes. The nodesn1
i belonging to the jet andn2

i on the
opposing wall are then relocated to their midpoint noden3

i (i = 1, . . . , K ); and the nodesn1
i

andn2
j ( j = 0, . . . , K2) are discarded. With this surgery, the two surfaces are now stitched

as one along the line segments connecting then3
i nodes, thus forming the eye of the torus.

The selection of the two impact nodesn1
0 andn2

0 as well as the matching of the nodal pairs
n1

i andn2
i (i = 1, . . . , K ) may be facilitated with a visualization tool such as PATRAN.

3.2. 3D Vortex-Ring Model

The principal idea of the vortex-ring model is to decompose the total potentialφ into
two parts: a potential associated with the circulation generated by the impact,ψ , termed
the ring potential, and a remainder,ϕ which is smooth in the entire fluid domain,

φ(x, t) = ψ(x)+ ϕ(x, t). (14)

The circulation of the flow0 around the vortex tube is modelled by placing a vortex ring
within theinterior of the vortex tube. The velocity potentialψ generated by this ring vortex
is a multivalued function. A single-valued branch ofψ may be selected by introducing an
imaginary surfaceSc stretching over the ring, across which the potentialψ jumps by an
amount0 equal to the strength of the vortex ring. This imaginary surface of discontinuity
Sc may be made to coincide with the impact surface, but this is not a necessary condition.

To construct the vortex ring, we construct a set of nodes,n4
i (i = 1, . . . , K ). These are

placed at a small distance from the corresponding nodesn3
i along the outward normal

direction (into the bubble). The vortex ring is then assumed to thread sequentially through
the vortex tube along the nodal loop formed sequentially by then4

i (i = 1, . . . , K ) in a
piecewise-linear fashion. The exact placement of the ring is immaterial from a theoretical
viewpoint so long as the ring is completely inside the torus. This is because any change
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in the vortex-induced potentialψ due to its placement would be exactly compensated for
in the remaining partϕ according to (14). Note that the piecewise-linear vortex ring in the
general 3D case is no longer planar. The strength of the vortex ring0 should reflect the
jump in potential across the contacting points during the impact process:

0 = φn1
0
− φn2

0
. (15)

The velocity field of the vortex ringvR may be computed directly from the Biot–Savart law,

vR(x, t) = 0

4π

K∑
j=1

∫ n4
j+1

n4
j

r(x, x′)× dl(x′)
r 3

, (16)

wheren4
K+1 ≡ n4

1, r(x, x
′) is a vector from a source pointx′ on the ring to a field pointx

being considered, andr = ‖r‖. The ring potentialψ for any point in the flow field may then
be obtained by integrating the velocity field from a suitable reference point along a path that
avoids the surface of discontinuitySc. This course was adopted in our earlier axisymmetric
work [1] and the earlier version of the three-dimensional work. Employing a result from
Milne–Thomson [27], the ring potential at any pointx in the flow field or the bubble surface
can be more efficiently obtained by

ψ(x) = 02(x)
4π

, (17)

where

2(x) =
∫

Sc

∂

∂n

(
1

r

)
dS (18)

is thesolid anglesubtend at the pointx by the surface of discontinuitySc that extends over
the vortex ring. Applying a simple triangulation toSc,2(x) is then equal to the arithmetic
sum of the solid angles subtended by the triangles ofSc at x, with the sign of the angles
being taken in accordance with the normal onSc. The sense of the normal onSc is governed
by the sign of0 following the usual right-hand screw rule. The computation ofψ(x) is
thus reduced to one of calculating the solid angles of spherical triangles for which standard
formula is available; see [28].2(x) suffers a jump of 4π acrossSc so that the ring potential
ψ jumps by an amount equal to0. It can be seen from (17) thatψ → 0 asx→∞.

We note thatψ satisfies the boundary integral equation (3) because it is a solution of the
Laplace equation in the fluid domain and tends to zero at infinity. The remainder potentialϕ

should thus also satisfy the same boundary integral equation and farfield boundary condition.
ϕ is smooth because the jump in the total potentialφ due to flow circulation is captured in
ψ . With the ring potentialψ having been prescribed, the evolution of the toroidal bubble is
now governed by the remainder potentialϕ. The boundary conditions on the bubble surface
Sb(5) must now be modified for use withϕ. They are

Dx
Dt
= ∇ϕ + vR, (19)

Dϕ

Dt
= −vR · (vR+∇ϕ)+ 1+ 1

2
‖∇ϕ + vR‖2− δ2z− ε

(
V0

V

)λ
, (20)
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wherevR is the velocity field produced by the ring vortex, which may be computed from
(16) or the direct differentiation ofψ . The solution of the boundary integral equation forϕ

and its marching in time follow that ofφ as described in Section 2.1.
The evolution of the immediate postimpact bubble is plagued by strong instabilities,

which may be both numerical and physical. These violent instabilities are kept in check by
the smoothing scheme which is applied toϕ every 10 time steps after the impact. Adaptive
mesh refinement is implemented throughout the toroidal phase as well, and as a result, the
vortex ring is also refined. In addition, one must also update the position of the vortex ring
along with the changing shape of the toroidal bubble to ensure that the ring stays well within
the bubble.

The typical computation in a time step involves the following: (i) compute the distribution
of ψ on the bubble given the current position of the vortex ring, (ii) computeϕ on the
bubble using (14), (iii) solve the boundary integral equations (3), and (8) to determine∇ϕ,
(iv) integrate (19) and (20) to find the new bubble surface and the new distribution ofϕ on it,
(v) compute the total potentialφ at the new bubble surface using (14), (vi) apply smoothing
as necessary, (vii) introduce a new vortex ring as necessary, and (viii) repeat from step
(i) for the next time step.

4. REBOUNDING OF THE TOROIDAL BUBBLE

As observed in the axisymmetrie case, the bubble will continue to shrink for a short while
after its transition to toroidal form before it rebounds. The high pressure inside the bubble
near its minimum volume was believed to cause another pressure peak and be responsible
for the “slamming” effect on nearby solid boundary [29].

Figures 7 and 8 show two series of bubble profiles produced from the new 3D model
and the axisymmetric model of Wanget al. [6, 30]. A shift in thez coordinates has been
made in our results to accommodate the different location of the coordinate origin adopted
in [30]. A major difference between the two is the duration of the toroidal phase; our
results indicate a far smaller lifetime for the toroidal bubble before it “reconnects” itself to
become singly connected again [8]. Also some of the detailed features on the axisymmetric
bubble (a more corrugated surface) are absent in the 3D results. This could be due to the
more limited resolution in 3D cases. Furthermore, the circulation caused by the impact and
the rotation of the toroidal bubble are more obvious in the 3D results. With no experimental
data available, it is difficult to judge which model is more accurate. However, the essential
physics associated with a jet impact, such as the circulation and rebounding, is successfully
captured in the new model.

The most important application of the 3D model lie of course in situations where the
assumption of axisymmetry ceases to be valid. One such situation concerns the collapse
of buoyant bubbles in the vicinity of a vertical wall situated atx = 1.5, for which two
sets of results are presented below. Buoyancy causes a collapsing bubble to develop a jet
that shoots upwards, whereas the Bjerknes force causes a similar jet to be directed towards
the wall. The combined effect hence induces an oblique jet whose angle of inclination is
determined by the relative strength of the two forces. A low buoyancy case,δ = 0.05, is
shown in Figs. 9 and 10. These give the postimpact views of the bubble from two angles;
Fig. 10 gives the side views of the bubbles in Fig. 9. Figures 9a and 10a show two views of
the bubble just after jet impact. The bubble continues to shrink in its postimpact phase to its
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FIG. 7. Evolution of toroidal bubble predicted by the current 3D model. Continued from the 3D results of
Fig. 5, (a) collapse phase att − t0= 0 (outermost), 7.4× 10−4, 1.22× 10−3, 1.51× 10−3, 1.56× 10−3 (innermost),
and (b) rebounding phase att − t0= 1.56× 10−3 (innermost), 1.59× 10−3, 1.61× 10−3, 1.66× 10−3, 1.70× 10−3,
1.71× 10−3, 1.73× 10−3, 1.75× 10−3. The circulation is0= 4.56 and the impact time ist0= 2.17147.

minimum volume in view (c), after which it rebounds almost radially with a slight elongation
along the direction of buoyancy. The jet is inclined at a fairly small angle to the horizontal
(due to the weak buoyancy effect), with a larger volume of gas below the jet axis (Figs. 10a–
10d). The jet remains intact during much of this collapsing phase but is strongly squeezed to a
thin tube as the bubble rebounds (Figs. 10d and 10e), suggesting that the axial momentum of
the jet has become greatly reduced during this phase of bubble development.Reconnection
of bubble surface, which will return the now toroidal bubble to its original simply connected
geometry, is expected to occur near the mid section of the jet shortly thereafter. Typically, the
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FIG. 8. Evolution of toroidal bubble predicted using the axisymmetric model [30]. Continued from the
axisymmetric results of Fig. 5, (a) collapse phase att = 2.1823 (outermost), 2.1852, 2.1895, 2.1978 (innermost),
and (b) rebounding phase att = 2.1978 (innermost), 2.2199, 2.2322, 2.2519, 2.2807, 2.3446, 2.4961 (outermost).
The circulation is0 = 4.72.

numerical problem becomes ill-conditioned, tending towards singularity, as reconnection
is approached. However, we do not expect the problem to be as severe as the jet impact case
where one surface approaches another at great speed, and damping or smoothing is required
to control the strong (physical and numerical) instabilities that accompany the impact.
Modelling of the reconnection, which will require further geometrical reconstruction of the
contacting surfaces, is not attempted here. Despite the violence of the impact, the solution
has remained highly symmetrical with respect to they axis in Fig. 9, indicating that the
numerical treatment we have applied, including the adaptive mesh refinement, is stable. It
can be seen in Figs. 10a to 10c that sharp edges thrown up by the instabilities are kept in
check by the smoothing operation.

The scene remains essentially the same for all weak and moderate buoyancy cases, but
becomes quite different when buoyancy effect is strong. The postimpact evolution for the
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FIG. 9. Evolution of a toroidal bubble, characterized byδ= 0.05 andε= 100, during the collapse phase
(a) t − t0= 0, (b) t − t0= 8.6× 10−5, (c) t − t0= 1.56× 10−4, and rebounding phase (c)t − t0= 1.56× 10−4,
(d) t − t0= 1.89× 10−4, (e) t − t0= 2.29× 10−4, with t0= 2.190120.

case of a buoyant bubble withδ = 0.12 is depicted in Figs. 11 and 12. In this case, the strong
buoyancy vehemently drives the jet at a sharp upward angle towards the upper part of the
toroidal bubble, squeezing the gas from the upper reaches of the bubble even as it rebounds
(Figs. 12c to 12e). The increase in the volume of the bubble during the rebounding phase
is thus derived from those parts below the jet. The approaching reconnection between the
upper surface of the jet and the top of the bubble leads to severe numerical ill-conditioning
and instability that show up as two small horns at the top of the bubble in Fig. 12e. Again
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FIG. 10. Evolution of the same toroidal bubble as in Fig. 9, shown here from a different perspective.

the symmetry of the solution is very good in Fig. 11 until the approach of reconnection in
Fig. 11e, where a trace of asymmetry becomes visible at the top of the bubble.

The nondimensional total energy of the fluid domain and the bubble content is given up
to a constant by

1

2

∫
Sb

φ
∂φ

∂n
dS+ 1

2
0Q+ V(1− δ2zc)+ εV

λ− 1

(
V0

V

)λ
, (21)

where the first and second terms represent the kinetic energy of the fluid domain. The second
term gives the energy associated with the circulation of flow around the toroidal tube,Q
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FIG. 11. Evolution of a torodial bubble, characterized byδ = 0.12 andε = 100, during the collapse phase
(a) t − t0 = 0, (b) t − t0 = 7.4× 10−5, (c) t − t0 = 1.07× 10−4, and rebounding phase (c)t − t0 = 1.07× 10−4,
(d) t − t0 = 2.29× 10−4, (e) t − t0 = 3.36× 10−4, with t0 = 2.184062.

being the volume flow rate through the eye of the torus. The third term is the potential energy
of the fluid domain due to the size and position of the bubble,zc being thez coordinate of
the bubble’s centroid. The last term is the potential energy of the bubble content. Energy is
conserved in the present one-point jet impact model. In a zone-impact model such as [9],
energy may be lost in the impacting process. The loss appears to be very small, however,
amounting to about 2% for gas bubbles [31].

Figure 13 shows the fluctuations of the total energy of a collapsing bubble undergoing
transition to toroidal geometry. It pertains to the case of a bubble undergoing 3D collapse
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FIG. 12. Evolution of the same toroidal bubble as in Fig. 11, shown here from a different perspective.

and jetting near a spherical-capped cylinder and the jet impact occurred att = 1.978. The
least-squares smoother was applied once every 10 time steps in Fig. 13a. In Fig 13b, the
smoother was applied once every 10 time steps before the impact and once every three time
steps after the impact. Common to both figures was the very sharp fluctuations of energy
at the time of jet impact. These fluctuations are due to the strong instabilities associated with
the highly singular nature of the jet impact phenomenon, as was discussed in Section 2.3.
The fluctuations of the total energy, larger in case (a) than in case (b), fade away with the
further evolution of the bubble in its toroidal state. The total energy recovers to within 2% of
its steady preimpact level, showing good overall conservation of energy through the impact.
The large fluctuations of energy of the immediate postimpact bubble may be attributed to
the highly jagged surface of the bubble during this period. The smoother was thus effective
in preventing the uncontrolled developments of thse instabilities from putting an abrupt end
to the simulation. The open circles in the figures indicate where the smoother had been
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FIG. 13. Time history of variation of total energy through jet impact. The bubble, withε = 100 andδ = 0,
was initiated at a distance of 1.5 from the side of a spherical-capped cylinder (diameter 1.0 and overall length 4.0)
at 0.5 off mid-cylinderical section. Jet impact time att0 = 1.978417. The smoother was applied once every 10
time steps in (a) and applied once every 3 time steps after jet impact in (b). Total energy associated with smoothed
data is denoted by (◦).

applied. Comparing the two cases, the more frequent smoothing applied in (b) was found
to result in only a marginal slow down in the development of the posttoroidal bubble. It is
also worth noting that the effect of smoothing on the energy is highly stable once initial
phase of wild fluctuations is past. This shows that the smoother is fairly energy neutral and
does not cause persistent monotonic increase or decrease of energy. Indeed, the smoother
has only a very small effect on the energy when the bubble surface is smooth. This is as it
should be, since there is then no high-frequency noise or errors that need removing, and the
surface should then be left intact by the smoother. This is evident in the steady energy level
in the latter part of the toroidal phase in Fig. 13, where we expect the bubble surface to be
smooth. The total energy stays constant after smoothing was discontinued. The hump in the



3D JET IMPACT AND TOROIDAL BUBBLES 359

total energy before the impact is due to the instability that sets in as the jet approaches the
opposing bubble wall.

We have chosen to focus our attention on key numerical issues in this paper and have thus
restricted the theoretical formulation here to cases of 3D bubble interaction with a plane
vertical wall. It suffices to note that the extension to general 3D solid structures may be
straightforwardly achieved, by modifying Green’s function and implementing the necessary
normal-velocity boundary conditions for solid surfaces in the boundary integral equation.

5. CONCLUDING REMARKS

A number of new techniques/schemes have been devised to address the numerical prob-
lems associated with the simulation of the three-dimensional jetting of bubbles and the
ensuing jet impact. These may be summarized as follows:

(i) A weighted-average scheme is used to calculate the material velocity on the bubble
surface which guarantees the convergence of the solution.

(ii) An adaptive mesh refinement scheme is introduced to maintain a high degree of
mesh regularity and uniformity during the development of the liquid jet. A highly distorted
mesh would bring the development of the jet to a premature halt.

(iii) A smoother based on the least-squares principle is encapsulated in the code to keep
in check the severe numerical instability that occurs before and after jet impact; it is found
to have good energy conservation property.

(iv) A 3D vortex ring is used to represent the circulation of the flow resulting from jet
impact and to facilitate the computation of the flow in the postimpact toroidal phase.

Satisfactory results have been obtained with the new 3D bubble model despite some
differences being observed between the 3D and axisymmetric impact results. The 3D model
and results presented in this paper concern primarily the interaction of bubbles with a plane
vertical wall. They serve as a window to an appreciation of the phenomenon of 3D jet
impact. Much more can be learned with the new 3D model in the case of the interaction of
bubbles with a general solid structure and/or with a free surface, but this is out of the scope
of the present paper.
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